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Evaluation of CPU Performance

The response time of a program A can be split into

I the user CPU time of A, capturing the time that the CPU spends for
executing A;

I the system CPU time of A, capturing the time that the CPU spends
for the execution of routines of the operating system issued by A;

I the waiting time of A, caused by waiting for the completion of I/O
operations and by the execution of other programs because of time
sharing.

In the following, we concentrate on the user CPU time.
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MIPS as performance measure

I A performance measure often used in practice to evaluate the
performance of a computer system is the MIPS rate for a program A:

MIPS(A) =
ninstr (A)

TU CPU (A) · 106
. (1)

ninstr (A): number of instructions of program A
TU CPU (A): user CPU time of program A

I modification:
MIPS(A) =

rcycle

CPI (A) · 106
,

where rcycle = 1/tcycle is the clock rate of the processor.
CPI (A): Clock cycles Per Instruction: average number of CPU cycles
used for instructions of program A

I Faster processors lead to larger MIPS rates than slower processors.
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MFLOPS as performance measure

I For program with scientific computations, the MFLOPS rate (Million
Floating-point Operations Per Second) is sometimes used. The
MFLOPS rate of a program A is defined by

MFLOPS(A) =
nflp op(A)

TU CPU (A) · 106
[1/s] , (2)

nflp op(A): number of floating-point operations executed by A.
TU CPU (A): user CPU time of program A

I The effective number of operations performed is used for MFLOPS: the
MFLOPS rate provides a fair comparison of different program versions
performing the same operations.
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Benchmark Programs

Different benchmark programs have been proposed for the evaluation of
computer systems:

I Synthetic benchmarks

I Kernel benchmarks: small but relevant parts of real applications

I Real application benchmarks comprise several entire programs which
reflect a workload of a standard user.

I popular benchmark suite: SPEC benchmarks (System Performance
Evaluation Cooperation), see www.spec.org

I SPEC06 is the current version for desktop computers:
12 integer programs (9 written in C, 3 in C++) and 17 floating-point
programs (6 written in Fortran, 3 in C, 4 in C++, and 4 in mixed C and
Fortran).
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Parallel Runtime of a Program

I The parallel runtime Tp(n) of a parallel program P with input size n
on p processors is the time between the start of program P and the
termination of the computations of P on all processors.

I For computers with physically distributed memory Tp(n) consists of:
I Time for local computations
I Time for data exchange with communication operations;
I Waiting time of processors e.g. because of load imbalance
I Time for synchronization of the executing processors or a subset of the

executing processors

I For computers with shared memory the time for data exchange is
replaced by the time for the access to global data.
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Costs of Parallel Programs

I The costs Cp(n) of a parallel program P with input size n on p
processors is the total time that the participating processors require for
the execution of P:

Cp(n) = Tp(n) · p
I The cost of a parallel program is a measure for all the computations

performed.

I A parallel program is cost optimal if Cp(n) = T ∗(n) holds, where
T ∗(n) is the runtime of the fastest sequential program;
A cost optimal program requires as many computations as the
fastest sequential program.
Difficulty: The fastest sequential program or method is possibly not
known or can only be determined with a high efforts.

I The costs is often called work or Processor-Time-Product;
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Speedup of a Parallel Program

I The Speedup Sp(n) of a parallel program P with input size n on p
processors is defined as:

Sp(n) =
T ∗(n)

Tp(n)

sequential time

parallel time

I Tp(n) = Parallel runtime of a parallel program P on p processors;
I T ∗(n) = Runtime of an optimal sequential implementation for the

solution of the problem;

I The speedup is a measure of the relative speed increase compared
to the best sequential implementation

I Typically at most linear speedup can be reached:
Sp(n) ≤ p (theoretical upper bound)

I In practice, due to cache effects a super linear speedup can occur.
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Efficiency of a Parallel Program

I The Efficiency Ep(n) of a parallel program P with input size n on p
processors is defined by

Ep(n) =
T ∗(n)

Cp(n)
=

Sp(n)

p
=

T ∗(n)

p · Tp(n)

• Cp(n) = Parallel program cost

• Tp(n) = Parallel runtime of a parallel program P

• T ∗(n) = Runtime of the best sequential implementation

I The efficiency is a measure for the portion of the runtime, that is
required for computations that are also present in the sequential
program.

I The ideal speedup Sp(n) = p is equivalent to Ep(n) = 1.
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Amdahl’s Law

I When the parallel implementation requires a (constant) fraction f ,
0 ≤ f ≤ 1, to be computed sequentially, the runtime of the parallel
implementation is composed of:
• The runtime f · T ∗(n) of the sequential part and

• The runtime of the parallel part, which is at least
(1− f )/p · T ∗(n)

I Attainable speedup

Sp(n) =
T ∗(n)

f · T ∗(n) + 1−f
p T ∗(n)

=
1

f + 1−f
p

≤ 1

f
.

I Example: f = 0.2 → Sp(n) ≤ 5 independent from the number p of
processors;
→ The sequential part has a big influence on the attainable speedup;
for an efficient utilization of a high number of processors, a
reduction of the sequential parts is required.
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Scalability

I The scalability of a parallel program on a parallel computer is a
measure for the property to get a performance increase
proportional to the number p of processors.

I Common observations:
• For a fixed problem size n and an increasing number of processors
p a saturation of the speedup occurs;

• For a fixed number of processors p and an increasing problem size
n, an increase of the speedup occurs.

I Concretization: Scalability means, that the efficiency of a parallel
program is constant when the number of processors p and the problems
size n is increased
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Overview

I We consider global communication operations and their
implementation on static interconnection networks (array, ring,
mesh, hypercube)

I How can these communication operations be efficiently implemented
on these networks?
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Assumptions for the analysis

The following analysis makes the following assumptions:

(a) The links of the network are bidirectional, i.e., messages can be sent
simultaneously in both directions

(b) Each node can simultaneously send out messages on all outgoing
links;
organization: use of output buffers with a separate controller for each
link

(c) Each node can simultaneously receive messages on all incoming links;
organization: input buffer for each incoming link

(d) Each message consists of several bytes which are transmitted without
any interruption

(e) The time for transmitting a message consists of
I the startup time ts (independent of the message size)
I the transfer time U = n · tc (proportional to the length n of the

message)
I transmitting a single message of n bytes takes time

T (n) = ts + n · tc
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Overview (continued)

I The startup time contains
I the time to construct the message (inserting header with address and

control information)
I the waiting time required if the selected output link is currently busy
I the propagation time, expressing the time between sending the first bit

by the sender and receiving the first bit by the receiver

I For most networks, the startup time is significantly larger than the time
required for an arithmetic operation

I In the following, we investigate the execution of communication
operations on different networks
Goal: derivation of asymptotic running times
 no exact timing formulas are derived
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Specializations and Generalizations

The following facts can be used:

I If a communication operation can be executed in time x , then a
specialization of the communication operation can also be executed in
time x

I If a communication operation can be executed in time x , then a
generalization of the communication operation takes at least time x
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Complete Graph Network

I Single Gather requires time O(1):
each node sends its message to the root node i
node i can simultaneously receive all messages
analogously: Scatter

I A total exchange can also be performed in time O(1):
each node sends out all its messages at the same time
 two messages are exchanged between two arbitrary nodes
the corresponding link is bidirectional  all exchanges require O(1)
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Linear array Network

I G = (V ,E ),V = {1, . . . , p},E = {(i , i + 1); 1 ≤ i < p}
I Single-broadcast: the root process sends the message to its left and

right neighbors; the neighbors forward the message step by step
worst case: root process at the end of the linear array
 p − 1 steps required
best case: root process in the middle of the linear array
 dp/2e steps required

I multi-broadcast:

(a) 1st step: each node sends its own message to its two neighbors
(b) 2nd step: each node i ∈ {2, . . . , p − 1} receives the messages from node

i − 1 and i + 1 and forwards them to nodes i + 1 and i − 1
(c) step k: each node i with k ≤ i ≤ p − 1 receives the message from node

i − k + 1 and forwards it to i + 1
each node i with 2 ≤ i ≤ p − k + 1 receives the message from node
i + k − 1 and forwards it to i − 1
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Linear array (continued)

illustration:
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I The messages sent to the right (left) proceed in each step one position
to the right (left)
 after p − 1 steps, all messages have arrived at their destination
 running time Θ(p)

I Scatter and Gather are specializations of multi-broadcast
 implementation in p − 1 steps
 running time Θ(p)
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Linear array (continued)

total exchange: we consider an arbitrary edge (k , k + 1)

I this edge splits the linear array in two subsets with k and p − k nodes

I total exchange: each node in one of the two subsets sends a message to
each node of the other subset
 k · (p − k) messages must be transmitted over edge (k, k + 1)

I for k = p/2: p2/4 messages must be transmitted over a single link
 running time Θ(p2)
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Ring network

I single-broadcast: d(p − 1)/2e steps
I multi-broadcast: similar to a linear array network

I step 1: each node sends its message in both directions
I step k: (2 ≤ k ≤ dp − 1/2e)

each node sends the messages received in the opposite direction
diameter dp/2e  running time dp/2e
illustration:
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I total exchange:
consider two nodes splitting the ring in two subsets with p/2 nodes each
 p2/4 messages must be transmitted over these two nodes (in each
direction)
 p2/8 steps  running time Θ(p2)
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Single-broadcast on a hypercube network

I We consider a hypercube network with d dimensions and p = 2d nodes
I Construction of a spanning tree for the network
I root at process α = 00 · · · 0 = 0d

the children in the tree are chosen by inverting one of the zero bits
that are right to the rightmost unity bit

I Illustration for d = 4:
0000

1000 0010 0001

1100 1010 1001 0110 0101 0011

1101 0111

0100

1110

1111

1011

note: all child nodes differ from their present node in exactly one bit
position
 there is a corresponding edge in the hypercube network
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Single-broadcast on a hypercube network (continued)

I The resulting spanning tree has depth d :
consider an arbitrary path from a leaf to the root.
Let (vi , vi+1) be an arbitrary edge on the path
 vi+1 contains one 1 less than vi

there are exactly d bit positions  path has maximum length d

I Using an arbitrary node i as root, the spanning tree is constructed as
follows:
let ⊕ be the bitwise exor operation
let T0 be the spanning tree from above;
The spanning tree Ti for root i results from T0 by using x ⊕ i for each
node x of T0.
Let (v ,w) be an edge in T0  v and w differ in one bit position
 v ⊕ i and w ⊕ i also differ in one bit position
 (v ⊕ i ,w ⊕ i) is an edge of the hypercube network

I summary: Single-broadcast in d = log p steps
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Multi-broadcast on a hypercube network

I Using the same spanning trees as for a single-broadcast leads to
collisions: example: d = 3
the spanning trees for root node 000 and 110 use the same edges
(010, 011) and (100, 101),  no simultaneous transmission possible
Illustration:
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solution: use of alternative spanning trees
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Spanning trees for multi-broadcast for hypercube

A

2

2

1

1

3

1

AA

A

A

A

A

2

010

110 100 101

110 100

111

000 001

101

011

001

010

011 001

111 101 100

000

110

100 111

010 011

001 101

000

110

000010

111011

000 100

011001 010

101 111 110

101 001

100 110 111

000 010 011

101

001 011 010

111 110

100 000

111

011 001 000

101 100

110 010
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Construction of the spanning trees

I Nk = set of all nodes with bit representations containing k unity bits

{00 · · · 0}N1 N2 · · ·N(d−2) Nd−1{11 · · · 1}

00 · · · 0 has position n(00 · · · 0) = 0,
11 · · · 1 has position n(11 · · · 1) = 2d − 1

I Nk is split into disjoint subsets Rk1, . . . ,Rknk

Rki contains all nodes from Nk that can be transformed to each other
by a bit rotation to the left
The subsets Rki form equivalence classes of Nk

The subsets Rki are ordered as follows:

{00 . . . 0}R11R21...R2n2 . . .Rk1...Rknk
. . .R(d−2)1...R(d−2)nd−2

R(d−1)1{11 . . . 1}

I Each node t ∈ {0, 1}d gets a number m(t) with m(00 · · · 0) = 0 and
m(t) = 1 + [(n(t)− 1) mod d ],
i.e. the nodes are numbered in a round-robin fashion by 1 · · · d .
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Representation of the sets Nk

example: d = 4:

N0

0

(0000)

N1

1

(0001)
2

(0010)
3

(0100)
4

(1000)︸ ︷︷ ︸
R11

N2

1

(0011)
2

(0110)
3

(1100)
4

(1001)︸ ︷︷ ︸
R21

1

(0101)
2

(1010)︸ ︷︷ ︸
R22

N3

3

(1101)
4

(1011)
1

(0111)
2

(1110)︸ ︷︷ ︸
R31

N4

3

(1111)

each node gets the number written above it
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Definition of the node sets Ei

I We define m + 1 node sets E0,E1, . . . ,Em

I Ei is the set of all end nodes of edge sets Ai

E0 = {(00 · · · 0)}
Ei = {t ∈ {0, 1}d | (i − 1)d + 1 ≤ n(t) ≤ i · d} for 1 ≤ i < m

Em = {t ∈ {0, 1}d | (m − 1)d + 1 ≤ n(t) ≤ 2d − 1} with m =

⌈
2d − 1

d

⌉
.

I For each set Ei the following holds:
Ei contains d contiguous nodes
 all nodes in Ei have a different number m(t) ∈ {1, . . . , d}
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Definition of the edges sets Ai

I Each node t ∈ Ei is connected with a node t ′ which results from t by
inverting the bit at position m(t) from the right;
this bit is always a unity bit by construction

I Special case: if m(11 · · · 1) = d , not the dth bit but the (d − 1)th bit
from the right is inverted, i.e., ((11 · · · 1), (1011 · · · 1)) ∈ Am, but
((11 · · · 1), (011 · · · 1)) 6∈ Am
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Spanning tree for multi-broadcast

I we consider the case d = 4; the following spanning tree results

EEE

m(1001)=4 m(1101)=3

m(0011)=1 m(1011)=4 m(1111)=3

m(0110)=2

m(1100)=3

m(0101)=1

m(1010)=2

m(0111)=1

m(1110)=2

EE

m(0001)=1

m(0010)=2

m(0100)=3

m(1000)=4

m(0000)=0

AAAAA 1 2 3 4

3 4210

spanning tree with root 00 · · · 0;
the edge sets Ai , i = 1, · · · , 4, of the different stages are indicated by
dotted arrows
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Total exchange on a hypercube network

I construction of a recursive algorithm with 2d − 1 steps
I d = 1: two nodes send a message to each other
I d → φ+ 1: the hypercube of dimension (d + 1) is split into two

sub-hypercubes C1 and C2 with dimension (d)
I Phase 1: a total exchange is performed simultaneously in C1 and C2;

each node of C1 or C2 exchanges messages with each other node of C1

or C2, respectively; this takes 2d − 1 steps
I Phase 2: each node in C1 or C2 sends its messages for all nodes in the

other sub-hypercube to the corresponding node in this sub-hypercube
Each node sends 2d messages  2d steps for this phase

I Phase 3: The messages received in phase 2 are distributed within C1

or C2 by a recursive use of the algorithm; this is similar to phase 1
 2d − 1 steps for phase 3

I Phase 1 and 2 can be performed simultaneously, since different links
of the hypercube network are used
 Phase 1 and 2 together require 2d steps

I Phase 3 must be performed after phase 2
 total number of steps in 2d + 2d − 1 = 2d+1 − 1
 overall running time Θ(p) = Θ(2d )
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